On the influence of boundary condition on stability of Hagen-Poiseuille flow

نویسنده

  • Vít Prusa
چکیده

We analyze the influence of choice of boundary condition (no-slip and Navier’s slip boundary conditions) on linear stability of Hagen–Poiseuille flow. Several heuristic arguments based on detailed analysis of spectrum of the Stokes operator are given, and it is concluded that Navier’s slip boundary condition should have a destabilizing effect on the flow. Finally the linear stability problem is solved by numerical means, and quantitative results confirming the heuristic prediction are obtained. It is shown that the destabilization is not strong enough to maintain an unstable disturbance, and that the significant destabilization effects of Navier’s slip boundary condition are restricted to small values of the Reynolds number. As a byproduct we obtain explicit formulas for eigenfunctions of the Stokes operater subject to Navier’s slip boundary condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows by Lattice-Boltzmann method

The aim of this study is to investigate the effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows in the context of single relaxation time Lattice Boltzmann method (SRT-LBM). The fluid flows are simulated using regularized, no-slip, Zou-He and bounce back boundary conditions for straight surfaces in a lid driven cavity and the two-dimensional flow ...

متن کامل

Investigation on Instability of Rayleigh-Benard Convection Using Lattice Boltzmann Method with a Modified Boundary Condition

In this study, the effects of Prandtl number on the primary and secondary instability of the Rayleigh-Benard convection problem has been investigated using the lattice Boltzmann method. Two different cases as Pr=5.8 and 0.7 representing the fluid in liquid and gas conditions are examined. A body forces scheme of the lattice Boltzmann method was presented. Two types of boundary conditions in the...

متن کامل

Axisymmetric Magnetohydrodynamic Squeezing flow of Nanofluid in Porous Media under the influence of Slip Boundary Condition

The various industrial, biological and engineering applications of flow of squeezing flow of fluid between parallel plates have been the impetus for the continued interest and generation renewed interests on the subject. As a part of the renewed interests, this paper presents the study of axisymmetric magnetohydrodynamic squeezing flow of nanofluid in porous media under the influence of slip bo...

متن کامل

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

On pressure and velocity flow boundary conditions and bounceback for the lattice Boltzmann BGK model

Pressure (density) and velocity boundary conditions inside a flow domain are studied for 2-D and 3-D lattice Boltzmann BGK models (LBGK) and a new method to specify these conditions are proposed. These conditions are constructed in consistency of the wall boundary condition based on an idea of bounceback of non-equilibrium distribution. When these conditions are used together with the improved ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2009